
Homework 1
Due: Thursday, Jan 30, 2025 at 12:00pm (Noon)

Written Assignment

Introduction

The purpose of this assignment is to fortify your background in statistics, linear algebra, runtime complexity,
socially responsible computing, and programming with NumPy. A strong grasp of these subjects is essential
for your success in the course.

You may be able to find answers to these problems by searching for the problem text or consulting a large
language model. Please search instead for the concepts being applied; the goal is not to solve these specific
problems but to review principles that will be fundamental to the course.

Problem 0: Collaboration Policy

Every student enrolled in CSCI 1420 is expected to know and abide by the course collaboration policy. Your
assignments will not be graded if you do not meet this expectation.

Please review the course collaboration policy available at this link and include the following signed statement
as your answer to Problem 0:

By signing with my Banner ID below, I agree to abide by the CSCI1420 Collaboration Policy as published on
the course website. I also agree to not include my real name on assignments in the course and instead will
use my Banner ID on any applicable submissions to preserve anonymity in grading.

Signed: *Your Banner ID Here*

Problem 1: Review of Probability and Statistics

(12 points)

a. Recall Bayes’ Theorem, which states that

P (B |A) =
P (A |B) · P (B)

P (A)
=

P (A ∩B)

P (A)
.

for a probability distribution P concerning events A and B.

Brown students love pastries. Suppose we have a distribution P that describes the characteristics of
Brown students’ pastries, where P (pastry is cake) = P (pastry is chocolate-flavored) = 1/2. Additionally,
P (pastry is expensive) = 1/7. Assume that each Brown student with a pastry has exactly one pastry.
Assume that encounters with Brown students with pastries are independent events unless otherwise spec-
ified.

i. Steve bumps into two random Brown students with pastries. What is the probability that both of
their pastries are cakes?
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Solution:

P (both cakes) = P (first is cake ∩ second is cake)

= P (first is cake) · P (second is cake)

=
1

2
· 1
2
=

1

4

ii. Jania bumps into two random Brown students with pastries. One is a computer science concentrator,
and the other is a history concentrator. Suppose the history concentrator’s pastry is a cake. What is
the probability that both of their pastries are cakes?

Solution:

P (both cakes |first is cake) = P (both cakes) ∩ P (first is cake)

P (first is cake)

=
1/4

1/2
=

1

2

iii. Prithvi bumps into two random Brown students with pastries. At least one of the students’ pastries
is chocolate-flavored. What is the probability that both of their pastries are chocolate-flavored?

Solution:

P (both chocolate-flavored | at least one is chocolate-flavored)

=
P (both chocolate-flavored) ∩ P (at least one is chocolate-flavored)

P (at least one is chocolate-flavored)

=
1/4

3/4
=

1
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iv. Andy bumps into two random Brown students with pastries. At least one of the students’ pastries is
an expensive cake. What is the probability that both of their pastries are cakes?

Solution: Let’s say that the first pastry is pastry A and the second pastry is pastry B. Let HA

denote the event that A is a cake, and let LA denote the event that A is expensive. Similarly, let
HB denote the event that B is a cake, and let LB denote the event that B is expensive. We’re
given that at least one pastry is a cake and is expensive. We can represent this as the following
event: (HA ∩ LA) ∪ (HB ∩ LB). We wish to find the probability that both pastries are cakes, or
P (HA ∩HB | (HA ∩ LA) ∪ (HB ∩ LB)).

P (HA ∩HB | (HA ∩ LA) ∪ (HB ∩ LB)) =
P ((HA ∩HB) ∩ ((HA ∩ LA) ∪ (HB ∩ LB)))

(HA ∩ LA) ∪ (HB ∩ LB)

Let’s expand the event in the numerator.

(HA ∩HB) ∩ ((HA ∩ LA) ∪ (HB ∩ LB))

= ((HA ∩HB) ∩ (HA ∩ LA)) ∪ ((HA ∩HB) ∩ (HB ∩ LB))

= (HA ∩HB ∩ LA) ∪ (HA ∩HB ∩ LB)

= (HA ∩HB) ∩ (LA ∪ LB)
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Notice that the event LA ∪ LB occurs when any one of the events LA ∩ Lc
B , L

c
A ∩ LB , or LA ∩ LB

occur. These events are mutually exclusive. So,

P (LA ∪ LB) = P (LA ∩ Lc
B) + P (Lc

A ∩ LB) + P (LA ∩ LB)

=
1

7
· 6
7
+

6

7
· 1
7
+

1

7
· 1
7

=
13

49

We can then find the value of the numerator.

P ((HA ∩HB) ∩ ((HA ∩ LA) ∪ (HB ∩ LB))) = P ((HA ∩HB) ∩ (LA ∪ LB))

= P (HA ∩HB)P (LA ∪ LB)

=
1

4
· 13
49

=
13

196

Now, on to the denominator.

P ((HA ∩ LA) ∪ (HB ∩ LB)) = 1− P ((HA ∩ LA)
c ∩ (HB ∩ LB)

c)

= 1− P ((HA ∩ LA)
c)P ((HB ∩ LB)

c)

= 1− (1− P (HA ∩ LA))(1− P (HB ∩ LB))

= 1−
(
1− 1

2
· 1
7

)(
1− 1

2
· 1
7

)
= 1− 169

196

=
27

196

Putting it all together, we end up with

P (HA ∩HB | (HA ∩ LA) ∪ (HB ∩ LB)) =
P ((HA ∩HB) ∩ ((HA ∩ LA) ∪ (HB ∩ LB)))

(HA ∩ LA) ∪ (HB ∩ LB)

=
P ((HA ∩HB) ∩ (LA ∪ LB))

P ((HA ∩ LA) ∪ (HB ∩ LB))

=
13/196

27/196

=
13

27

Hint: None of the four parts have the same answer.

b. Suppose Z1, . . . , Zk are independent standard normal random variables. This means that E[Zi] = 0 and
Var(Zi) = 1. Let

Q =

k∑
i=1

Z2
i .

Derive an expression for E[Q] in terms of k.
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Hint: Apply the linearity of expectation.

Remark: Q as defined above follows the Chi-Squared Distribution.

Solution: By the linearity of expectation,

E[Q] = E

[
k∑

i=1

Z2
i

]

=

k∑
i=1

E
[
Z2
i

]
.

Recall that the variance of a random variable Z may be expressed as

Var(Z) = E
[
Z2

]
− (E[Z])

2
.

Since Zj is standard normal, E [Zj ] = 0, and Var(Zj) = 1. Therefore, E
[
Z2
j

]
= 1. Plugging this result in,

we find that

E[Q] =
k∑

i=1

1

= k .

Problem 2: Review of Linear Algebra

(12 points)

a. Consider a matrix A ∈ Rn×n. Let rank(A) < n. Prove that A has an eigenvalue equal to 0. You may not
use the Invertible Matrix Theorem when solving this problem.

Hint: Recall that the rank of a matrix is equal to the number of linearly independent columns of the matrix.

Solution 1 (Linear Dependence): Let A1, ...,An be the columns of A. Since rank(A) < n, the n
columns of A are linearly dependent. Therefore there is linear combination of the columns of A that is
equal to the zero vector. In other words, there exist k1, .., kn such that k1A1 + k2A2 + ... + knAn = 0.
Then, Ak = 0, where

k =

k1...
kn


We can then conclude that Ak = 0 · k, and 0 is an eigenvalue of A by definition.

Solution 2 (Rank-Nullity): We use the Rank-Nullity Theorem, which gives

rank(A) + nullity(A) = dim(Rn) = n

Since rank(A) < n, we have nullity(A) = n− rank(A) > 0. This means there is some non-zero vector, v,
in the null space of A. By definition, we know that Av = 0 = 0v, so 0 is an eigenvalue of A (and v is an
associated eigenvector).
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b. Let B ∈ Rn×n be a symmetric matrix satisfying xTBx > 0 for all x ∈ Rn such that x ̸= 0. Remember
that the eigenvalues of a symmetric matrix are real. Prove that all of the eigenvalues of B are strictly
greater than 0. Do not use any theorems for positive definite matrices.

Solution: Let λ be an eigenvalue of B and let v be the corresponding eigenvector. Then,

Bv = λv

Next, we can multiply by vT on both sides:

vTBv = vTλv = λvTv = λ||v||2.

We know that vTBv is strictly greater than 0. The square of the norm of v is also strictly greater than 0,
because eigenvectors are nonzero. Therefore, λ must also be greater than 0. Thus, all of the eigenvalues
of B are greater than 0.

c. Let C ∈ Rn×n be a symmetric matrix. Assume that C has n unique eigenvalues. Prove that all of the
eigenvectors of C are orthogonal.

Hint: Begin your proof by considering the equations

Cv1 = λ1v1

Cv2 = λ2v2

where (λ1, v1) and (λ2, v2) are two different eigenpairs of C. Then, multiply the second equation by vT
1 .

Solution: Let λ1 and λ2 be different eigenvalues of C and let v1 and v2 be the corresponding eigenvectors.
So,

Cv1 = λ1v1 and Cv2 = λ2v2

Then, multiply the second equation by vT
1 :

vT
1 Cv2 = λ2v

T
1 v2

(CTv1)
Tv2 = λ2v

T
1 v2

(Cv1)
Tv2 = λ2v

T
1 v2

λ1v
T
1 v2 = λ2v

T
1 v2

(λ1 − λ2)v
T
1 v2 = 0

We know that λ1 − λ2 ̸= 0 because λ1 ̸= λ2. So, vT
1 v2 = 0. Therefore, all of the eigenvectors of C are

orthogonal.

Problem 3: Runtime Complexity

(14 points)

The Fibonacci sequence can be defined by the recurrence relation F (n) = F (n − 1) + F (n − 2) for n ≥ 2,
with F (0) = 0 and F (1) = 1. We can make use of the fact (likely first noted by Edsger Dijkstra) that(

1 1
1 0

)n

=

(
F (n+ 1) F (n)
F (n) F (n− 1)

)
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for any positive integer n. So, to compute F (n), we can compute

(
1 1
1 0

)n−1

and return the upper left

number in the matrix.

Describe an algorithm to compute F (n) for arbitrary n that uses fewer than O(n) additions and multiplica-
tions (don’t worry about the size of the integers), and prove that it satisfies this complexity bound. That
is, prove a sublinear complexity bound in terms of n on the number of additions and multiplications this
algorithm performs. Feel free to search for such an algorithm, but please generate the proof of the complexity
bound yourself.

To compute F (n) we can compute

(
1 1
1 0

)n−1

and return the upper left number. To compute

(
1 1
1 0

)n

for even n, we just need to compute

(
1 1
1 0

)n
2

and multiply it by itself - in other words, we can reduce the

exponent by half with a constant amount of work. This suggests an algorithm with complexity O(log n).

Pseudo-code:

1: function fib(n)
2: if n = 0 then
3: return 0
4: else if n = 1 then
5: return 1
6: mat←power(n− 1)
7: return mat[0][0]

1: function power(n)
2: if n = 1 then
3: return [[1,1],[1,0]]
4: else if n is even then
5: mat← power(n/2)
6: return mat ∗mat
7: mat← power(n− 1)
8: return mat∗ [[1,1],[1,0]]

Proof of time complexity:
A call to fib makes at most one call to power. Each call to power results in at most one recursive call. The
total number of recursive calls is O(log n) because we divide n by 2 at least every other call (in the worst
case, we get an odd number every time we divide by 2, but then we immediately make a recursive call with an
even number and divide by 2). We do at most a constant number of arithmetic operations in each recursive
call of power, and at most constant operations in fib, so the algorithm has O(log n) arithmetic operations.

Problem 4: Socially Responsible Computing

(7 points)

While planning the construction of the Fukushima nuclear power plant, data scientists were interested in
determining the highest earthquake magnitude the plant should be able to withstand. To achieve this, they
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used continuous regression models using data of earthquake magnitudes recorded over the years. The graphs
below plot two models, where the y-axis represents annual frequency and the x-axis represents earthquake
magnitude. The magnitude ranges 4.5 up to the rare 9.5. The diamonds denote the observed frequencies of
earthquakes of different magnitudes, and the solid line represents the predictions of the frequencies by each
model.

Source: Silver, N. (2012). The Signal and the Noise: Why So Many Predictions Fail–but Some Don’t. New
York, NY: Penguin Press.

Scientists referred to one of the two graphs above to inform the plant’s engineering and determined that
the plant should withstand an earthquake of up to 8.6. In March 2011, the Fukushima nuclear power plant
was hit with a 9.1 earthquake—one the most severe nuclear accidents since Chernobyl.

a. The scientists’ determination for the plant’s design to withstand an earthquake of 8.6 magnitude led to a
detrimental consequence. Looking at the two graphs, what does each model predict about the probability
of an earthquake of magnitude 8.6?

Solution: This question is designed to get students thinking about how researchers were using this model
to predict/understand something they have never seen before (an earthquake of greater than magnitude
9). Some key points/example explanations to look out for in answers:

• Models were both looking at frequency of earthquake vs. magnitude of earthquake.

• Left graph uses a characteristic fit, where the trend line fits the training data very well.

• Right graph uses a Gutenberg-Richter fit, where trend line does not fit as well

• Model in right graph predicts a higher frequency than model in left graph for higher magnitude
earthquakes

b. Which graph did the scientists use in making their decision for the plant’s design? What went wrong in
the modeling, and why should they have referred to the other graph instead?

Hint: Think of things that often go wrong with choosing and fitting a model to some given data, and
make note of the difference in the two graphs.

Solution:

• The scientists used the right graph in making their decision for the plant’s design

• What to look for in answers: overfitting

7



– The disaster was a result of dangers of overfitting - used the model in the second graph to inform
decisions, which gave an accurate prediction for training data but not in real world application.

– Scientists should have referred to the right side graph because model is not as fitted to data, and
can generalize better
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Programming Assignment

Introduction

The purpose of this portion is to get familiar with NumPy, which we will use heavily throughout the semester.

NumPy is a powerful numerical computing library for Python that provides very efficient, heavily optimized
functionalities for large, multi-dimensional arrays and matrices (see np.ndarray), as well as many standard
manipulations and linear algebra algorithms (see np.linalg).

It is strongly preferred over “pure Python” implementations (eg. with for-loops) for several reasons. In
particular, NumPy leverages several highly optimized low-level libraries (see BLAS and LAPACK) written in
languages like C and Fortran to minimize all overhead involved in the operations and computations, since
Python is an interpeted language whereas C and Fortran are compiled. Additionally, NumPy arrays will
always be much more memory-efficient than Python list’s.

Set up

Python 3.9 and NumPy are necessary for the completion of programming assignments for this course.
Python and NumPy can be installed on your own machine via the directions found at this link. For
your convenience, we also have a course-wide virtual environment set up on the department machines at
/course/cs1420/cs142_env. The environment can be activated from your own folder by running the fol-
lowing command: source /course/cs1420/cs142_env/bin/activate.

Stencil Code

You can find the stencil code for this assignment on GitHub classroom at this link. For more details, please
see the download/submission guide.

We have provided the following stencil code:

• warmup.py contains 8 functions for you to implement: part_a through part_g. You will implement
these functions in theWarm Up: Introduction to NumPy portion of this programming assignment.

• eigenvalues.py contains two functions for you to implement: qr and compute_eigenvalues. You
will implement these functions in the Computing Eigenvalues via QR Decomposition portion of
this programming assignment.

You should only need to modify code marked with #TODO in warmup.py and eigenvalues.py to complete
this assignment. If you make any other edits to the provided stencil code, please make sure to revert them
or leave them commented out in the final handin for autograder compatibility.

To test your implementations in eigenvalues.py, you can run python tests.py in a terminal. Make sure
you activate the virtual environment first when working over ssh or on a department machine:

source /course/cs1420/cs142 env/bin/activate
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Warm Up: Introduction to NumPy

If you have never used NumPy before, please read through the “Getting started” portion of the NumPy
user guide before attempting this exercise. For each of the following parts, please implement its associated
function in warmup.py.

NumPy is often abbreviated as “np” (i.e., import numpy as np). You may find the following functions par-
ticularly helpful: np.arange, np.zeros, np.ones, np.eye, np.sum, np.hstack, np.vstack, np.transpose,
np.matmul, np.inner, np.where, and np.dot.

You may not use np.array() (eg. to create the desired Numpy ndarray’s from Python list’s).

a. Create a 1-dimensional matrix containing the values 2 through 6 inclusive. Return the new matrix in
function part_a.

b. Create a 4× 4 matrix where all entries are 1. Return the new matrix in function part_b.

c. Create a 6× 6 identity matrix. Return the new matrix in function part_c.

d. Given matrix A, compute the sum of the values of its columns. Return the answer in function part_d.

e. Given matrices A and B, compute C, where C = ATB. Return the matrix C in function part_e.

f. Using either np.vstack or np.hstack, create a 4× 2 matrix where all the values in the first column are
zeros and all the values in the second column are ones. Return the new matrix in function part_f.

g. Given a matrix of floats A, create a new matrix of the same shape where all values greater than 3.0 are
set to 1 and all other values are set to 0. Return the new matrix in function part_g.

10

https://numpy.org/doc/stable/user/
https://numpy.org/doc/stable/user/


Computing Eigenvalues via QR Decomposition

Your task is to finish implementing both the Householder QR decomposition algorithm (lines 2 through 9 in
Algorithm 1) and the QR eigenvalue computation algorithm (Algorithm 2). In the stencil, these are contained
respectively in qr and compute_eigenvalues in the eigenvalues.py. The lines in Algorithm 1 which you
must implement are colored violet. Please note that this problem is intended to serve as a NumPy exercise;
therefore, understanding the theory behind the algorithms is not a requirement.

QR Decomposition

Let A ∈ Rn×n. The QR decomposition of A is a matrix product QR, where Q ∈ Rn×n is an orthogonal
matrix (QT = Q−1) and R ∈ Rn×n is upper triangular. This factorization is called the QR decomposition.

Below, we present the Householder QR decomposition algorithm. Again, you do not need to understand the
mathematics behind this algorithm. The purpose of implementing this algorithm is to gain familiarity with
transforming mathematical and algorithmic notation into respective NumPy operations. This includes learn-
ing how to multiply matrices, compute norms, and manipulate NumPy arrays using NumPy’s functionalities
instead of Python for-loops.

Some notes regarding the notation presented in Algorithm 1:

1. We let yi denote the i-th entry of some vector y, and ya:b will denote the subvector y with first element
ya and last element yb−1. Note that the vector ya:b should contain b− a entries.

2. Similarly, xi,j will denote the entry in the i-th row and j-th column of some matrix X. Let Xa:b,c:d

denote the submatrix of X with upper left corner xa,b and lower right corner xc−1,d−1. Note that
Xa:b,c:d should have dimension (c − a) × (d − b). You can find some examples of this notation on our
NumPy guide.

3. Also, Xa:b,j will denote the j-th column of submatrix Xa:b,0:n. Note that Xa:b,j is a vector with b− a
entries.

4. Let In×n denote the n× n identity matrix. Let 0n×n denote an n× n matrix where all entries are 0.

5. ∥ · ∥2 denotes the L2 norm. sign(x) evaluates to 1 if x ≥ 0 and 0 otherwise.

Algorithm 1 Householder QR Decomposition Algorithm

1: function QR(A)
2: R← copy(A)
3: V ← 0n×n

4: I ← In×n

5: for k = 0 to n− 1 do
6: x← Rk:n,k

7: Vk:n,k ← sign(x0)∥x∥2I0:n−k,0 + x
8: Vk:n,k ← Vk:n,k/∥Vk:n,k∥2
9: Rk:n,k:n ← Rk:n,k:n − 2Vk:n,k(V

T
k:n,kRk:n,k:n)

10: Q← 0n×n

11: for j = 0 to n− 1 do
12: x← I0:n,j
13: for k = n− 1 downto 0 do
14: xk:n ← xk:n − 2Vk:n,k(V

T
k:n,kxk:n)

15: Q0:n,j ← x
16: return Q,R
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Some notes regarding the implementation of Algorithm 1:

1. The sign(·) function has been implemented for you in the stencil code. Do not use np.sign.

2. The NumPy equivalent for Xa:b,c:d is X[a:b, c:d] (see Python’s slice notation). Similarly, the NumPy
equivalent for Xa:b,c is X[a:b, c]. If you wish to index the entire j-th column of X, use X[:, j].

3. The vector Vk:n,k in line 9 should be treated strictly as a column vector. Note that calling V[k:n, k]

will return a 1-dimensional NumPy array. To transform Vk:n,k into a column vector, you can call
V[k:n, k].reshape(-1, 1). Generally, if x satisfies x.shape = (a,), then you can reshape x into an
a× 1 NumPy array by calling x.reshape(-1, 1).shape = (a, 1).

4. You should not use V[k:n, k] /= np.linalg.norm(V[k:n, k]). You should instead use
V[k:n, k] = V[k:n, k] / np.linalg.norm(V[k:n, k]).

Computing Eigenvalues with QR Decomposition

We can leverage the QR decomposition to approximately compute the eigenvalues for a matrix A ∈ Rn×n.
First, we let Atemp = A. Then, we iteratively update Atemp a total of m times, where the k-th iteration
constitutes the following updates:

QR = Atemp,

Atemp = RQ.

Under certain conditions, Atemp will converge to an upper triangular matrix. Then, the eigenvalues of A are
the diagonal elements of Atemp. The complete algorithm is presented below as Algorithm 2. Please use the
qr function you implemented following Algorithm 1 for the QR decomposition step. Do not use NumPy’s qr
function.

Algorithm 2 Algorithm for Eigenvalue Computation

1: function ComputeEigenvalues(A, m)
2: Atemp ← A
3: for i = 0 to m− 1 do
4: Factor Atemp into QR = Atemp

5: Atemp ← RQ
6: return diag(Atemp)
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Grading Breakdown

The grading breakdown for the assignment is as follows:

Problem 1 18%
Problem 2 18%
Problem 3 22%
Problem 4 11%
Programming 31%
Total 100%

Problem 0 is ungraded but must be submitted for your assignments this semester to be graded.

Handing In

You will turn in your final handin via Gradescope, which you should have been automatically added to
through Canvas. If you have questions about using Gradescope or have not been added, please ask on
Edstem. For this assignment, you should have written answers for Questions 1, 2, 3, and 4. Please submit
the written portion to “Homework 1” on Gradescope.

For the programming, you should submit your code (warmup.py and eigenvalues.py) to “Homework 1
Code” on Gradescope.

Anonymous Grading

You need to be graded anonymously, so please do not write your name anywhere on your handin.

Obligatory Note on Academic Integrity

Plagiarism — don’t do it.

As outlined in the Brown Academic Code, attempting to pass off another’s work as your own can result
in failing the assignment, failing this course, or even dismissal or expulsion from Brown. More than that,
you will be missing out on the goal of your education, which is the cultivation of your own mind, thoughts,
and abilities. Please review this course’s collaboration policy and if you have any questions, please contact a
member of the course staff.
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